Strains isolated from marine bacteria with the highest concentration of secondary metabolites are being targeted, which contribute to the majority of bioactive compounds and yield non-ribosomal peptide synthases, a valuable drug source product [7]. MMI's strategy focuses on the identification of novel biosynthetic pathways of microorganisms living in the ocean environment to develop a drug discovery program. 

Project Campaign #mapmarinemicrobes

​​Bio-synthetic > FRONTIER

Meet Grommet, Courtesy Blue Ocean Society

MAPPING MICROBIAL DIVERSITY IN MARINE SEDIMENT  "One benthic site at a time"​        

​MMI’s metagenomics program characterizes the microbial biodiversity within marine sediment. Our current project is located in a U.S. National Marine Sanctuary that is managed by NOAA. Critical ecological knowledge about the health of the sanctuary food web will inform conservation practices. An additional goal is to screen the vast resource of bacterial genomes to identify novel gene clusters that have a high potential to identify natural products to improve public health. We are generating unique DNA libraries that possess key genes coding for secondary metabolites, including antibiotics. 

Copyright © Marine Microverse Institute. All rights reserved.


Ocean Facts
Over 70% of the Earth’s surface is ocean and vast areas remain unexplored. This biodiverse environment is home to 34% of known phyla.

It is estimated that less than 1% of these microorganisms have been cultured and characterized in the laboratory. The remaining 99 % likely possess unique genetic diversity [8].

This new frontier has revealed a novel “unculturable world” in which community structure is more readily classified directly from environmental samples.

Enzymes isolated from marine microbes have a range of diverse biochemical functions and characteristics that have allowed microbial communities to adapt and thrive for millennia.

This genetic diversity translates to chemical diversity that harbor unique chemical compounds that may lead to natural product discovery.

Advancements in next generation sequencing have led to improved metagenomic techniques that significantly improve scientists' ability to delineate undiscovered microorganisms [9].

[7] Owen et al. 2013. Mapping gene clusters within arrayed metagenomics libraries to expand the structural diversity of biomedically relevant natural products. PNAS. 110:11797-11802.

[8] Allen E, Banfield JF. 2005. Community genomics in microbial ecology and evolution. Nature reviews Microbiology 3: 489-498.
[9] Zeyaullah M, Kamli MR, Islam B, Atif M, Benkhayal FA, Nehal M, Rizvi MA, Ali A. 2009. Metagenomics An advanced approach for noncultivable micro-organisms. Biotech Mol Biol Rev. 4(3):49-54.